Pooling to multiply SARS-CoV-2 testing throughput

Here is an email from Kevin Patrick Mahaffey, and I would like to hear your views on whether this makes sense:

One question I don’t hear being asked: Can we use pooling to repeatedly test the entire labor force at low cost with limited SARS-CoV-2 testing supplies?

Pooling is a technique used elsewhere in pathogen detection where multiple samples (e.g. nasal swabs) are combined (perhaps after the RNA extraction step of RT-qPCR) and run as one assay. A negative result confirms no infection of the entire pool, but a positive result indicates “one or more of the pool is infected.” If this is the case, then each individual in the pool can receive their own test (or, if we’re getting fancy [read: probably too hard to implement in the real world], perform an efficient search of the space using sub-pools).

To me, at least, the key questions seem to be:

– Are current assays sensitive enough to work? Technion researchers report yes in a pool as large as 60.

– Can we align limiting factors in testing cost/velocity with pooled steps? For example, if nasal swabs are the limiting reagent, then pooling doesn’t help; however if PCR primers and probes are limiting it’s great.
– Can we get a regulatory allowance for this? Perhaps the hardest step.

Example (readers, please check my back-of-the-envelope math): If we assume base infection rate of the population is 1%, then pooling of 11 samples has a ~10% chance of coming out positive. If you run all positive pools through individual assays, the expected number of tests per person is 0.196 or a 5.1x multiple on testing throughput (and a 5.1x reduction in cost). This is a big deal.

If we look at this from the view of whole-population biosurveillance after the outbreak period is over and we have a 0.1% base infection rate, pools of 32 samples have an expected number of tests per person at 0.0628 or a 15.9x multiple on throughput/cost reduction.

Putting prices on this, an initial whole-US screen at 1% rate would require about 64M tests. Afterward, performing periodic biosurveillance to find hot spots requires about 21M tests per whole-population screen. At $10/assay (what some folks working on in-field RT-qPCR tests believe marginal cost could be), this is orders of magnitude less expensive than mitigations that deal with a closed economy for any extended period of time.

I’m neither a policy nor medical expert, so perhaps I’m missing something big here. Is there really $20 on the ground or [something something] efficient market?

By the way, Iceland is testing many people and trying to build up representative samples.

Comments

Comments for this post are closed